PS400 Composite Solid Lubricant Plasma Coating

DATA SHEET

NASA Glenn innovators have developed the most advanced composite solid lubricant plasma coating composed of a nickel-molybdenum-aluminum matrix alloy, for high temperature tribological applications.

Characteristics:

High speed operation for long duration

High dimensional stability for high temperature applications

Strong

High density

Smooth surface texture (self-polishing)

Extreme oxidative stability

Low friction

Enhanced creep resistance

Ideal for low speed sliding contact under moderate loading in extreme environments

Excellent dimensional stability & surface finish, good tribological properties (after initial break-in)

Applications:

Foil air bearings

Variable geometry inlet guide vane bushings

Variable inlet guide vanes

Variable stator vane actuator linkages

High temperature industrial conveyor chains

Process control valve stems

Butterfly valve stems

Oil-free turbomachinery

Exhaust Gas Recirculation (EGR) valves

Waste gate valves for turbochargers

High-temperature applications where sliding friction and wear are a concern

PS400 Composite Solid Lubricant Plasma Coating

PS400 Coating Composition

PS400 composition	Weight %
Binder	NiMoAl/70%
Hardener	Cr ₂ O ₃ /20%
Low Temp Lubricant	Ag/5%
High Temp Lubricant	Fluorides (BaF, - CaF, eutectic)/5%

Technical Data

Material Properties	Value	Unit
Maximum load (estimated)	10-30	MPa
Operating temperature (min)	Estimated -40	°C
Operating temperature (max)	760	°C
Dry sliding velocity	0-300	m/s
Poisson's ratio	.28	
Young's modulus	83	GPa
Compressive strength (ultimate)	200-250	MPa
Tensile strength	20-24	MPa
Coating thickness	200-400 (250 ideal)	μ m
Coating surface roughness	1 or less	μ m

Dry Sliding Performance Data for PS400-coated rods and cobalt bushing

Temp °C	Load (N)	Contact stress (MPa)	PS400 wear (mm³/N-m)	Cobalt wear (mm³/N-m)	Static coefficient of friction
760	222.4	14.1	9.45 x 10 ⁻⁶	1.79 x 10 ⁻⁶	.43
760	333.6	17.2	1.18 x 10 ⁻⁶	1.02 x 10 ⁻⁶	.40
760	444.8	19.9	1.10 x 10 ⁻⁶	1.03 x 10 ⁻⁶	.37
538	222.4	14.2	3.00 x 10 ⁻⁶	2.34 x 10 ⁻⁶	.41
538	333.6	17.3	3.69 x 10 ⁻⁶	1.43 x 10 ⁻⁶	.40
538	444.8	20.0	3.81 x 10 ⁻⁶	1.01 x 10 ⁻⁶	.36
260	222.4	14.2	1.87 x 10 ⁻⁴	8.25 x 10 ⁻⁵	.82
260ª	333.6	17.4	1.23 x 10 ⁻³	1.22 x 10 ⁻⁴	.84

Reciprocating speed of 1 Hz (stroke angle 15°) & 50,000 cycles

^a Test performed for 2 hours